Qualitative aspects of a Volterra integro-dynamic system on time scales

نویسندگان

  • Vasile Lupulescu
  • Sotiris K. Ntouyas
  • Awais Younus
چکیده

This paper deals with the resolvent, asymptotic stability and boundedness of the solution of time-varying Volterra integro-dynamic system on time scales in which the coefficient matrix is not necessarily stable. We generalize to a time scale some known properties about asymptotic behavior and boundedness from the continuous case. Some new results for the discrete case are obtained.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyers-Ulam Stability of Non-Linear Volterra Integro-Delay Dynamic System with Fractional Integrable Impulses on Time Scales

This manuscript presents Hyers-Ulam stability and Hyers--Ulam--Rassias stability results of non-linear Volterra integro--delay dynamic system on time scales with fractional integrable impulses. Picard fixed point theorem  is used for obtaining  existence and uniqueness of solutions. By means of   abstract Gr"{o}nwall lemma, Gr"{o}nwall's inequality on time scales, we establish  Hyers-Ulam stabi...

متن کامل

Function Bounds for Solutions of Volterra Integro Dynamic Equations on Time Scales

Introducing shift operators on time scales we construct the integro-dynamic equation corresponding to the convolution type Volterra differential and difference equations in particular cases T = R and T = Z. Extending the scope of time scale variant of Gronwall’s inequality we determine function bounds for the solutions of the integro dynamic equation.

متن کامل

Dynamic Behaviors of an Almost Periodic Volterra Integro Dynamic Equation on Time Scales

This paper is concerned with an almost periodic Volterra integro dynamic equation on time scales. Based on the theory of calculus on time scales, by using differential inequality theory and constructing a suitable Lyapunov functional, sufficient conditions which guarantee the permanence and the global attractivity of the system are obtained. Then, by using the properties of almost periodic func...

متن کامل

Approximate solution of system of nonlinear Volterra integro-differential equations by using Bernstein collocation method

This paper presents a numerical matrix method based on Bernstein polynomials (BPs) for approximate the solution of a system of m-th order nonlinear Volterra integro-differential equations under initial conditions. The approach is based on operational matrices of BPs. Using the collocation points,this approach reduces the systems of Volterra integro-differential equations associated with the giv...

متن کامل

Spline Collocation for system of Fredholm and Volterra integro-differential equations

The spline collocation method  is employed to solve a system of linear and nonlinear Fredholm and Volterra integro-differential equations. The solutions are collocated by cubic B-spline and the integrand is approximated by the Newton-Cotes formula. We obtain the unique solution for linear and nonlinear system $(nN+3n)times(nN+3n)$ of integro-differential equations. This approximation reduces th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012